813 research outputs found

    Infrared divergence in QED3_3 at finite temperature

    Full text link
    We consider various ways of treating the infrared divergence which appears in the dynamically generated fermion mass, when the transverse part of the photon propagator in N flavour QED3QED_{3} at finite temperature is included in the Matsubara formalism. This divergence is likely to be an artefact of taking into account only the leading order term in the 1N1 \over N expansion when we calculate the photon propagator and is handled here phenomenologically by means of an infrared cutoff. Inserting both the longitudinal and the transverse part of the photon propagator in the Schwinger-Dyson equation we find the dependence of the dynamically generated fermion mass on the temperature and the cutoff parameters. It turns out that consistency with certain statistical physics arguments imposes conditions on the cutoff parameters. For parameters in the allowed range of values we find that the ratio r=2∗Mass(T=0)/criticaltemperaturer=2*Mass(T=0)/critical temperature is approximately 6, consistently with previous calculations which neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction rewritte

    Non-trivial Infrared Structure in (2+1)-dimensional Quantum Electrodynamics

    Get PDF
    We show that the gauge-fermion interaction in multiflavour (2+1)(2+1)-dimensional quantum electrodynamics with a finite infrared cut-off is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial fixed point at zero momentum, as well as to a significant slowing down of the running of the coupling at intermediate scales as compared with previous analyses on the subject. Both these features constitute deviations from fermi-liquid theory. Our discussion is based on the leading- 1/N1/N resummed solution for the wave-function renormalization of the Schwinger-Dyson equations . The present work completes and confirms the expectations of an earlier work by two of the authors (I.J.R.A. and N.E.M.) on the non-trivial infrared structure of the theory.Comment: 10 pages (LaTex), 5 figures (Postscript

    Dynamical Mass Generation in a Finite-Temperature Abelian Gauge Theory

    Get PDF
    We write down the gap equation for the fermion self-energy in a finite-temperature abelian gauge theory in three dimensions. The instantaneous approximation is relaxed, momentum-dependent fermion and photon self-energies are considered, and the corresponding Schwinger-Dyson equation is solved numerically. The relation between the zero-momentum and zero-temperature fermion self-energy and the critical temperature T_c, above which there is no dynamical mass generation, is then studied. We also investigate the effect which the number of fermion flavours N_f has on the results, and we give the phase diagram of the theory with respect to T and N_f.Comment: 20 LaTeX pages, 4 postscript figures in a single file, version to appear in Physical Review

    Effect of retardation on dynamical mass generation in two-dimensional QED at finite temperature

    Full text link
    The effect of retardation on dynamical mass generation in is studied, in the imaginary time formalism. The photon porarization tensor is evaluated to leading order in 1/N (N is the number of flavours), and simple closed form expressions are found for the fully retarded longitudinal and transverse propagators, which have the correct limit when T goes to zero. The resulting S-D equation for the fermion mass (at order 1/N) has an infrared divergence associated with the contribution of the transverse photon propagator; only the longitudinal contribution is retained, as in earlier treatments. For solutions of constant mass, it is found that the retardation reduces the value of the parameter r (the ratio of twice the mass to the critical temperature) from about 10 to about 6. The gap equation is then solved allowing for the mass to depend on frequency. It was found that the r value remained close to 6. Possibilities for including the transverse propagator are discussed.Comment: 26 pages 8 figure

    Collective coordinates of the Skyrme model coupled with fermions

    Full text link
    The problem of construction of fiber bundle over the moduli space of the Skyrme model is considered. We analyse an extension of the original Skyrme model which includes the minimal interaction with fermions. An analogy with modili space of the fermion-monopole system is used to construct a fiber bundle structure over the skyrmion moduli space. The possibility of the non-trivial holonomy appearance is considered. It is shown that the effect of the fermion interaction turns the nn-skyrmion moduli space into a real vector bundle with natural SO(2n+1)SO(2n+1) connection.Comment: 10 page

    Effect of Wavefunction Renormalisation in N-Flavour Qed3 at Finite Temperature

    Full text link
    A recent study of dynamical chiral symmetry breaking in N-flavour QED3_3 at finite temperature is extended to include the effect of fermion wavefunction renormalisation in the Schwinger-Dyson equations. The simple ``zero-frequency'' truncation previously used is found to lead to unphysical results, especially as T→0T \to 0. A modified set of equations is proposed, whose solutions behave in a way which is qualitatively similar to the T=0T=0 solutions of Pennington et al. [5-8] who have made extensive studies of the effect of wavefunction renormalisation in this context, and who concluded that there was no critical NcN_c (at T=0) above which chiral symmetry was restored. In contrast, we find that our modified equations predict a critical NcN_c at T≠0T \not= 0, and an N−TN-T phase diagram very similar to the earlier study neglecting wavefunction renormalisation. The reason for the difference is traced to the different infrared behaviour of the vacuum polarisation at T=0T=0 and at T≠0T \not= 0.Comment: 17 pages + 13 figures (available upon request), Oxford preprint OUTP-93-30P, IFUNAM preprint FT94-39, LaTe

    Quantal interferometry with dissipative internal motion

    Full text link
    In presence of dissipation, quantal states may acquire complex-valued phase effects. We suggest a notion of dissipative interferometry that accommodates this complex-valued structure and that may serve as a tool for analyzing the effect of certain kinds of external influences on quantal interference. The concept of mixed-state phase and concomitant gauge invariance is extended to dissipative internal motion. The resulting complex-valued mixed-state interference effects lead to well-known results in the unitary limit and in the case of dissipative motion of pure quantal states. Dissipative interferometry is applied to fault-tolerant geometric quantum computation.Comment: Slight revision, journal reference adde

    Reply to Comment on ``Can gravity distinguish between Dirac and Majorana neutrinos?''

    Get PDF
    This is a reply to a comment (gr-qc/0610098) written by Nieves and Pal about our paper (gr-qc/0605153) published in Phys. Rev. Lett. 97, 041101 (2006).Comment: 1 page, no figures, REVTe
    • …
    corecore